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ABSTRACT

A recombination mechanism that significantly reduces charge

collection from very dense ion tracks in silicon devices was

postulated by Zoutendyk et al. The theoretical analysis presented

here concludes that Auger recombination is such a mechanism and

is of marginal importance for tracks produced by 270-MeV krypton,

but of major importance for higher density tracks. The analysis

shows that recombination loss is profoundly affected by track

diffusion. As the track diffuses, the density and recombination

rate decrease so fast that the linear density (number of elec-

tron-hole pairs per unit length) approaches a non-zero limiting

value as t_. Furthermore, the linear density is very nearly

equal to this limiting value in a few picoseconds or less. When

Auger recombination accompanies charge transport processes that

have much longer time scales, it can be simulated by assigning a

reduced linear energy transfer to the ion.
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I. INTRODUCTION

Zoutendyk et al. [i] postulated the existence of a recombina-

tion mechanism that significantly reduces charge collection from

very dense ion tracks in silicon devices. This can impact device

susceptibility to single-event effects (SEE). It is reasonable to

ask if Auger recombination (AR) can have such an effect. This

report presents a theoretical investigation of the impact of AR

on charge collection from an ion track.

2. PHYSICAL MODELS

Ion tracks consist of high electron-hole pair (EHP) density,

which is well described by the ambipolar diffusion equation

D div grad P - 6P/6t = R (1)

where D is the ambipolar diffusion constant and P is the excess

hole density (hole density minus equilibrium hole density).

Because of quasi-neutrality and high carrier density, P is also

equal to the EHP density. R is the recombination rate and 6/6t

denotes partial derivative with respect to time. It will be seen

that the time scale for significant AR is a few picoseconds or

less, which is very short compared to typical lifetimes for

Shockley-Read-Hall recombination (SRHR). Therefore, SRHR has a

negligible effect on EHP loss via AR, and the objective is to
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estimate only this loss, so only AR is considered in this analy-

sis. For quasi-neutral and high-density conditions, the AR rate

used by the numerical simulation code PISCES [2] reduces to

R = CP 3

where C=Cn+C p with Cn=2.Sxl0 -31 cm6/s and Cp=9.9xl0 -32 cm6/s

(default values used by PISCES). Therefore, the governing equa-

tions are

D div grad P - 6P/6t = CP 3 for t > 0 (2)

P = PI for t = 0 (3)

where PI is the initial EHP density. The track is treated as

infinitely long and uniform in the vertical (z) coordinate so

that P(r,t) depends only on the radial distance r (where

r2=x2+y 2) and on time t. The objective is to obtain an estimate

of P and of the linear density (number of EHPs per unit length),

which is the x and y integral of P.

3. MATHEMATICAL ANALYSIS

The first objective is to solve (2) and (3) for P. These equa-

tions will be converted into an integral equation, but the proofs

of some theorems to follow require the integral equation to be



solvable by iteration (i.e., iteration produces a converging

sequence of iterates). To accomplish this, (2) will be rewritten

so that the right side has a bounded P derivative. Define PM by

PM -= max Pi(r). (4)r

It is evident that P(r,t)SP M for all r,t and, therefore, the

solution P is not changed if (2) is replaced with

D div grad P - 6P/6t = CF(P) (s)

where F is defined by

F(_) =

T3 if ITI < PM

PM 2 T if ITI > PM"

(6)

Although the right side of (5) is indistinguishable from the

right side of (2) when P is the correct solution, there can be a

difference in the equations when iteration is used to solve them

because some initial guesses can cause the equations to produce

different sequences of iterates. The motivation for (5) is to

make convergence proofs easier.

(A) Inteqral Equations

Define the constant B by

B m 3CPM 2 (7)
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and write (5) as

div grad P - D-I(Bp + 6P/6t) = D-I[cF(P) - BP]. (8)

Define P0 as the solution to

div grad P0 - D-16Po/6t = 0 for t > 0 (9)

P0 = PI for t = 0 (i0)

and define PB by

PB m e-Bt P0 (ii)

so that PB satisfies

div grad PB - D-I(BPB + 6PB/6t) = 0 for t > 0 (12)

PB = PI for t = 0. (13)

The two-dimensional infinite-space Green's function for the

operator on the left of (9) is [3]

G(X,t;X',t') = (t-t') -I exp[-((x-x,)2+(y-y,)2)/(4D(t-t,)) ] (14)



where uppercase X denotes the vector (or point in space) with

components x and y. G can be used to solve (9) and (i0) for P0

with the result [3]

r
P0 = (4_D)-II PI (r') G(X,t;X',0)

d2X ,

J
(15)

where the integral is defined by

d2X , = dx' dy'.

J j-®
(16)

The B on the left of (8) can be eliminated by a change in vari-

ables produced by multiplying P by e Bt and the equation can then

be inverted by using G [3]. The final result is

It[P = PB + (4_D)-I [BP-CF(P)] e-B(t-t')G d 2x' dt'.

j0j
(17)

For notational brevity, the arguments of P and G in the integrand

are not displayed, but P in the integrand is P(r',t') and G is

G(X,t;X',t'). The analysis leading to (17) also applies if B is

replaced with zero and the result is

It[P = P0 - C(4_D)-I F(P) G d2X ' dt'.

j0j
(18)
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(B) Bounds by Iteration

The method used in later sections to estimate P and the linear

density will consist of constructing lower and upper bounds. Some

concepts, discussed in this section, will be needed for future

use.

We will call a function P1 an upper bound for another function

P2 if

Pl(r,t ) > P2(r,t) for all r,t _ 0.
(19)

P1 is called a lower bound for P2 if and only if P2 is an upper

bound for PI"

Let p(2) be obtained by starting with some p(1) (parentheses

emphasize that the superscripts are not exponents) and iterating

(17); i.e., they are related by

It[p(2) = pB+(4_D)-I [Bp(1)_CF(p(1))] e-B(t-t')G d2X ' dt'. (20)

j0j

It is easy to show that Br-CF([) is an increasing function of 7

and, therefore, if p(1) is an upper bound for P, the right side

of (20) is an upper bound for the right side of (17), i.e., p(2)

(the left side of (20)) is an upper bound for P (the left side of

(17)). Therefore, if we iterate (17) by starting with an upper

bound for P, another upper bound is obtained. Repeated iteration

6



produces a sequence of upper bounds, similarly, lower bounds

produce new lower bounds. Equation (18) has a similar property

except that the negative sign in front of the integral causes

upper bounds to produce lower bounds and vice versa. It is shown

in Appendix A that a sequence of functions obtained by iterating

(17) converges, and if p(1) and p(2) are related by (20), then

p(2) will be a better estimate of P than p(1) is (unless p(1)=p,

in which case p(2)=p)l. Equation (18) does not have this property

and iteration typically produces a wild oscillation (in the sense

that if the initial function is a little larger than P, the first

iterate will be much smaller than P and the second iterate will

be much much larger than P, etc.). However, (18) will produce a

good (accurate) bound if we start with a sufficiently good bound.

The convergence proof (Appendix A) applies only for finite t.

Functions produced by iteration of (17) have an unfortunate

property in the limit as t_. This can be seen by integrating

(20) while using

G d2X = 4_D

J
(21)

to get

i. As an incidental point, if B was 3CPM2/2 instead of 3CPM 2,

the iteration would converge faster. But (18) would lose the

property of bounds producing new bounds. Without this property,

the only simple error estimates available are those derivable

from Banach's fixed point theorem, which are extremely pessimis-
tic.

7



[ p2 d2X: I PBd2X+ [t
j J Jo (BPI-CPI 3) d2X' 1 e -B(t-t') dt'.J

For large t, the first integral on the right goes to zero and,

because of the exponential coefficient, only the asymptotic (in

t') value of

(BPl_CPl3) d2X '

3

contributes to the t' integral. Assuming that the P13 integral

goes to zero, we have

If ]fteBttlim P2 d2x = lim (BPI-CPI 3) d2X '

t-_ lt,_ j Jo
dt'

r

= lim I P1 d2X"

t_ J

Therefore, if we define the linear densities Nl(t) and N2(t ) by

Ni(t) = [ Pi d2x for i = 1,2

J

we conclude that N 2 has the same limiting value as N I. In a

sequence of iterates obtained by iterating (17), each function

produces the same limiting value for the linear density as the

initial guess. Fortunately, this problem is not too serious when



working with upper bounds for P. The reason is that if we start

with an upper bound p(0) and then iterate (17) n times to obtain

an upper bound p(n), we will find that the linear density N(n)

first decreases and then increases in t. But the actual linear

density is strictly decreasing so an upper bound at a given time

is also an upper bound for all later times. Therefore, N(n) must

be plotted in t only until it begins to increase. The minimum

value can be used for all later times.

The above statements indicate that the following methods will

be effective for constructing bounds for the linear density:

(i) To obtain an upper bound:

i: Start with an upper bound p(0) for P and iterate

(17) n times to obtain an upper bound p(n) with corre-

sponding linear density N(n) (t). Plot N (n) against t

until it reaches a minimum and use the minimum value

for all later times

or

2: Start with a lower bound p(0) for P and iterate (17)

n times to obtain a lower bound p(n). Then iterate (18)

once to obtain an upper bound p(n+l).

(ii) To obtain a lower bound:

i: Start with a lower bound p(0) for P and be content

with it (iterating (17) will not improve the limiting

value of the linear density)

9



or

2: Start with an upper bound p(O) for P and iterate

(17) n times to obtain an upper bound p(n). Then iter-

ate (18) once to obtain a lower bound p(n+l).

(C) An Initial Estimate

P can be estimated by constructing upper and lower bounds and

the previous discussion shows how bounds can be constructed. But

those methods require that we start with a bound and another

method, discussed here, is needed to construct an initial bound.

The idea is to guess at a function and then perform a test to

determine if the function is a bound for P. One such test is the

following. Let PE be a bounded and well behaved (in the sense

that div grad PE and 6PE/6t exist) function that is to be tested.

PE is required to satisfy

PE = PI at t = 0. (22)

Define g by

g _ -D div grad PE + 6PE/6t + CPE3 " (23)

It is shown in Appendix B that:

I0



If g(r,t)_0 for all r,t_0, then PE is an upper bound for P. (24)

If g(r,t)_0 for all r,t_0, then PE is a lower bound for P. (25)

If neither (24) or (25) are satisfied, the test is inconclusive

and we should guess at another PE and try the test again.

(D) A Particular Estimate when PI is a Gaussian Function

Consider the special case

PI(r) = N 0(4_Dt0)-I exp[-(4Dt0)-ir2] (26)

for some constants N O (the initial linear density) and t O . The

form (26) is not a good approximation for an actual ion track but

it greatly simplifies the analysis and can produce useful esti-

mates when combined with judicious curve fitting (this is illus-

trated in the next section). The integral in (15) can be evaluat-

ed with the result

P0(r,t) = N0[4_D(t+t0)] -I exp(-[4D(t+t0)]-ir 2) . (27)

Define PEI by

PEI -= [2Ct + (f(t)P0)-2] -I/2 (28)

where f satisfies

II



f(0) = 1 (29)

f(t) > 0 for all t > 0 (30)

but otherwise remains to be determined.

Using the chain rule to evaluate the derivatives on the right

side of (23), we find that several terms subtract out (which is

the motivation behind the particular estimate PEI), and the

result is

g = fP0(2Ctf2P02 + 1)-5/2 gl (31)

where gl is defined by

gl -= (2Ctf2P02+l)f'/f +[3C/(2D) ]t(t+t0)-2f2P02r2 (32)

and the prime denotes differentiation. PEI will be constructed to

be a lower bound for P by selecting f to make g satisfy (25).

This can be accomplished by selecting f to make gl satisfy

max gl(r,t) = 0 for all t _ 0. (33)
r_0

Using (27), we find that the maximum in r is a relative maximum

given by

12



max gl(r,t) =
r>0

(f'/f)+3C(4_D)-2t(t+t0)-3N02f 2 exp[ (2/3) (t+t0) (f'/f)-l]

so (33) becomes

f'/f = -(3/2)Kt(t+t0)-3f2 exp[ (2/3) (t+t0)f'/f ] (34)

where

K - 2CN02e-I(4_D)-2 . (35)

To solve for f, define the function H-I:[0,_)_[0,_) by

H -I (u) -= ue u . (36)

Note that H -I is strictly increasing so it has an inverse, denot-

ed H, which is also strictly increasing. Equation (34) can be

written as

f'/f = -(3/2)(t+t0)-iH(Kt(t+t0 )-2f2)

and integrating while using (29) gives

[ it 1f(t) = exp -(3/2) (r+t0)-iH(K[[7+t0]-2f2([)) dT .

J0
(37)

13



Equation (37) can be solved for f by iteration I.

Iteration of (37) is done numerically, but in numerical work we

cannot go to the limit as t_. We must work with a finite inter-

val [0,T] and it is necessary to know how large T must be in

order for f(T) to adequately approximate f(_). This can be deter-

mined by writing

f(T)/f(_) = exp (3/2) (7+to)-IH(KT[7+to]-2f2(7)) d7 .
JT

If we require, for example, that the ratio be between 0.99 and i,

then we require

o0(3/2) (7+t0)-iH(KT[7+t0]-2f2(7)) d7 < 0.01 .

JT

It is easy to show that H(u)_u for positive u. Also, f(7)Sl so

the above condition will be satisfied if

i. A convergence proof is not required because convergence is not

used to prove any theorems. Convergence is needed only for the

numerical computation of f and can be verified on a case-by-case

basis during the computation. But it is useful to note that (37)

is similiar to (18) in the sense that upper bounds produce lower

bounds and vice versa. If the initial guess is f=l (an upper

bound), iteration will produce a sequence of alternating upper

and lower bounds. The correct solution is bracketed between any

pair of adjacent iterates and is known to within a given toler-

ance when the difference between adjacent iterates is less than

that tolerance.

14



o0(3/2) Kf(r+t0)-3 d[ < 0.01

JT

or

(3/2)K(T+t0/2) (T+t0)-2 < 0.01

This will be satisfied if

T = 150K . (38)

In addition to evaluating T, the previous analysis also demon-

strated that the integral in (37) must be finite, even in the

limit as t-_. Therefore, we conclude from (37) that f(_)>0. It is

not difficult to show that

PEI _ f(t)P0 as t _ (39)

SO that a lower bound NEI(t ) for the linear density N(t) satis-

fies

NEI(t) _ f(t)N 0 as t _ (40)

and does not go to zero as t_. The conclusion is that some EHPs

never will recombine (via AR) no matter how long we wait. It is

not difficult to show that PEI is within 1% of the right side of

(39) and, therefore, NEI is within 1% of the right side of (40),

when t>T. But f(t) is within 1% of f(_) when t>T. Therefore, NEI

15



is within 2% of its limiting value f(_)N 0 when t>T. Nearly all AR

that ever will occur will do so in a time T given by (38).

With f now regarded as known, a lower bound estimate NEI for

the linear density can be evaluated from

NEI(t) = PEI d2x = 2_ [2Ct+(fP0)-2]-i/2r dr .
j j0

(41)

An upper bound for P is PE2 obtained from (18) according to

It[PE2 = P0 -c(4_D)-I PEI3G d2X ' dt'

j0j
(42)

and an upper bound for the linear density is NE2 given by

r

NE2(t) = I PE2 d2x •

J
(43)

Integrating (42) while using (21) and (28) gives

It[NE2(t) = N0-2_C (2Ct'+[f(t')Po(r,t')]-2)-3/2 rdr dt'. (44)

JoJ0

The integrals in (41) and (44) can be evaluated using (27) and

the change in variables

u = exp{[4D(t+t0)]-ir 2)

16



with the result

NEI = fl -I in[f2+(l+f22) I/2]

tNE2 = N0-(I/2 ) f3(t') dt'
J0

(45)

(46)

where

fl - (2Ct) i/2[4_D(t+t0) ]-i (47)

f2 m N0fl f (48)

f3 --- (tfl)-l(In[f2+(l+f22)I/2]-f2(l+f22)-I/2) " (49)

4. COMPUTER CODE AND NUMERICAL EXAMPLES

A computer code that numerically evaluates the lower and upper

bound linear density estimates NEI and NE2 is listed in Appendix

C. The value used for D is constructed from PISCES default values

of 500 and I000 cm2/V-s for hole and electron mobilities, respec-

tively. This gives (at room temperature) D=17.3 cm2/s. C is

constructed from PISCES default values as discussed in section 2.

The code assumes the initial density to be given by

PI = NO(_rc 2)-I exp(-r2/rc 2) (50)

17



where the initial linear density NO and characteristic radius r c

are specified by the user. The code output is in a file called

RCOM.OUTand is the estimated fractional surviving linear density

[(NEI+NE2)/2 ± (NE2-NEI)/2]/N 0 •

Martin et al.[4] give the radial profile for a track produced

by 270-MeV (initial energy) Kr at selected depths in a Si target.

Their data was used to plot Figures i, 2, and 3 which refer to

depths of 5, 15, and 25 _m respectively. Because the computer

code assumes a profile of the form (50), it is necessary to curve

fit. This motivates the construction of the upper curves in each

figure, which are the integrated densities, i.e., the total

number of EHPs contained within a given radius (the asymptotic

values of these curves are the linear densities). These curves

are useful for telling us where curve fitting is and is not

required to be accurate. Accuracy is not needed on intervals

containing a negligible fraction of the EHPs. The dashed curves

in the figures are the functions of the form (50) that were

selected to represent the actual curves. In all cases, the fit-

ting curves produce the same linear densities as the actual

curves. The remaining criteria for selecting the fitting curves

is a mixture of intuitive judgment and reasoning. For example, in

the 25 _m case (Figure 3), the fit is reasonably good from

r=5xl0 -4 to 5x10 -3 _m. This interval contains about two thirds

of the total EHPs, and the fit is best where the density is

18
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largest (with the exception of r<5xl0 -4 _m, but less than 10% of

the EHPs are located there) which is also where AR is most impor-

tant.

The fitting curves in Figures I, 2, and 3 are characterized by

rc=l. 5x10 -2, i. ixl0 -2, and 2. 76xi0 -3 _m respectively, and

N0=2.34x10 I0, 2.58xi0 I0, and 7.2xi09 cm-I respectively. Using

these numbers, the computer code predicts the fractional losses

to be 5.0%, 10.4%, and 12.3% respectively.

5. QUALITATIVE AND SEMI-QUANTITATIVE PREDICTIONS

It was shown in section 3 that the linear density approaches a

non-zero limiting value as t_. This behavior is due to diffusion

which lowers the EHP density and, therefore, the AR rate (if D

was set equal to zero in (I), we would find that the linear

density goes to zero). The AR rate decreases so fast with in-

creasing t that some EHPs never will recombine (via AR) no matter

how long we wait. It was also shown that the linear density is

within approximately 2% of its asymptotic value after time T

given by (38) (the word "approximately" is needed because it was

the estimate PEI rather than the actual P that was shown to be

within 2% of its asymptotic value after time T). Using numbers

from the examples of section 4, we find that T is on the order of

a ps. This is very fast compared to most charge transport pro-

cesses, including the recovery stage of funneling [with the possi-
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ble exception of funneling in a very thin (less than 5 micron)

epi-layer] [5]. AR is not fast compared to the collapse stage of

funneling [5], but the section of track below the collapsed

depletion region remains intact (it is not pulled apart by the

electric field) immediately after the collapse. If the track is

dense enough to cause a nearly complete collapse (so that nearly

all of the track remains intact, which is the expected situation

for tracks dense enough for AR to be important), the collapse

stage will not significantly affect AR. Therefore, AR is expected

to occur as section 3 predicted during a typical funneling pro-

cess, and be essentially finished before any significant charge

collection occurs. Therefore, when accompanying many charge

transport processes, including funneling, AR should have the same

effect as a reduction in ion linear energy transfer (LET). We can

define another LET, which will be called the "reduced LET", which

relates to surviving linear density in the same way that ordinary

LET relates to initial linear density. Charge collection calcula-

tions should automatically include AR losses if reduced LET

replaces ordinary LET. Single-event upset rate calculations

should automatically include AR losses if experimentally measured

device cross sections and Heinrich flux are plotted against

reduced LET instead of ordinary LET.

If we agree to call a 5 to 10% loss of EHPs "marginally impor-

tant", then the examples of section 4 predict that AR is of

marginal importance for 270-MeV Kr and, therefore, of major

importance for ions exhibiting a significantly larger loss.
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6. SOURCES OF ERROR

There are a number of sources of error in these predictions of

AR losses. The first is the replacement of a complicated system

of nonlinear equations (the equations used by PISCES) with the

simple diffusion equation (2). The second source of error is the

fact that the computer code (Appendix C) produces an approximate,

not exact, solution to (2). The PISCES code is not practical for

parametric studies (because of large CPU time) but it can be run

once to access the errors stated above. A cylindrical coordinate

version of PISCES was run for the 15 _m example of section 4.

PISCES predicted a 10.1% loss compared to our prediction of a

10.4% loss. Thus, it appears that the first two sources of error

are not too serious.

A third source of error is the need to curve fit a function of

the form (50) to the initial EHP density, which might look noth-

ing like a Gaussian. The amount of error depends on the individu-

al case, but can be estimated by trying several fits and running

the code for each to determine how sensitive the predicted AR

loss is to N O and r c. The error might be reduced by an analysis

(which remains to be worked out) that tells us how to select good

values for N O and r c.

The final source of error might be the most difficult to deal

with. The equation used to solve for P assumes the charge carri-

ers to be thermalized (an assumption also made by PISCES). But
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significant AR requires r c to be on the order of 10 -3 or 10-2 _m

and, under these conditions, some of the AR occurs in a tiny

fraction of a picosecond. It is not clear how thermalized the

track is during AR. The impact of this source of error is unknown

at this time and quantitative estimates should be regarded as

unreliable until they are supported by experimental measurements.

7. CONCLUSION

Quantitative estimates should be regarded as unreliable at this

time, as stated in section 6, but it is reasonable to expect the

qualitative statements, regarding the existence and use of re-

duced LET (see section 5), to be valid. Although unreliable, the

quantitative estimates give credibility to the assertion that AR

is of marginal importance to 270-MeV Kr tracks and of major

importance to denser tracks. Therefore, it would be highly de-

sirable to design and conduct an experiment that can directly

measure reduced LET for Kr and heavier ions.
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APPENDIX A

The objective is to show that iteration of (17) produces a

sequence that converges to the solution P. It suffices to show

that (17) satisfies the hypothesis of Banach's Fixed Point Theo-

rem [6]. This will imply not only convergence but also that each

iterate is at least as good of an approximation to P as the

previous iterate.

Write (17) as

P = TP (AI)

where T is the operator defined by

It[TP = PB + (4_D)-I [BP - CF(P)] e-B(t-t')G d2X ' dt'. (A2)

j0j

We will work with the set of continuous functions and the maximum

norm, which produces a complete metric space [7]. T is obviously

a self mapping, i.e., it maps continuous functions into continu-

ous functions. The only remaining condition that must be estab-

lished is the existence of an _<I such that

II_TP1-_TP211-< IP1-P211 (A3)

for all P1 and P2" I I*I I denotes the maximum norm, i.e.,
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l[fll = max [f(r,t)[

r_[0,_)

tE[0,T]

where T is the largest value of t that the solution is required

to apply to. To establish (A3), note that

ft[I ITPI-TP21[:(4_D)-I[[ [V(PI)-V(P2) ]e -B(t-t')G d2X ' dt' I[ (A4)

j0j

where

V(7) = BT-CF(7) : 3CPM2_-CF(f) .

Note that V is continuous and its derivative is defined and

continuous except at two isolated points (f=±PM)" Therefore,

PV(PI)-V(P2) : _' (f) df .

J P2

(A5)

Except at the two isolated points, V' is bounded by

V'(r) S 3CPM 2 .

Combining this with (A5) and (A4) gives
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[tfI ITPI-_TP211 < (4_D)-II I 3CPM21PI-P21 e-B(t-t')G d2X 'dt' I I

j0j

< 3CPM2(4_D)-IIIPI-P211 II [te -B(t-t') [ G d2X ' dt'll. (A6)

jo j

The integral can be evaluated with the result

te-B(t-t') [ G d2X ' dt' = 4_D(3CPM2)-I[I-e -Bt]

j0 j

so that

jo j
G d2X, dt'II : max 14_D (3CPM2) -i [ l-e-Bt ] I

t_[0,T]

= 4_D(3CPM2)-I[I-e-Bt ]

and (A6) becomes

I I_PI-_P211 ---_11PI-P211

where

= I_e-BT .

Since _<i, the proof is complete.
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APPENDIX B

The objective is to prove (24) and (25). These statements are

special cases of the more general statement which follows. Let

_l(X,t) and _2(X,t) be bounded and well behaved (in the sense

that div grad _ and 6_/6t exist) and let them satisfy

81(X,0) = 82(x,0) = PI(X) . (BI)

Define gl and g2 by

gi = CSi 3 - D div grad _i - 68i/6t for i = 1,2 (B2)

The conclusion is that if g2(X,t)_gl(X,t) for all X and for all

t>0, then _2(X,t)ZSI(X,t) for all X and for all t>0.

To prove this statement, let _B be a constant that is an upper

bound for both 1811 and I_21. Define F* by

r if Irl _ _BF*(r) _ 8B2r if Irl > _B

(B3)

and write (B2) as

D div grad _i - 68i/6t = CF*(Si) - gi (B4)

which can be inverted (see section 3) to give
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rtf
_i = PB+(4_D) -I [B_i-CF*(_i)+gi]e-B(t-t')G d2X ' dt'

j0j
(B5)

where

B -= 3C_B2 (B6)

and PB satisfies (12) and (13), except that B is now given by

(B6) instead of (7). The presence of gi in (B5) does not affect

the operators contraction mapping property and we conclude, from

Appendix A, that (B5) can be solved by iteration, starting with

any initial guess. For i=i,2, let _i (j) (parentheses emphasize

that j is a superscript, not an exponent) be defined by

_i (0) = 0

fli (j+l) = PB +

(4_D) -I [Bfli(J)-cF*(fli(J))+gi]e-B(t-t')G d2X 'dt' .
j0j

(B7a)

(B7b)

Note that

_i = lim _i (j)

j_

Therefore, to show that _2>@I , it suffices to show that

82 (J)>_l (j) for all j=l,2, .... This can be shown by induction.

From
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g2 _ gl (B8)

and (B7) we have _2(I)>_i (I) . Now assume that

_2 (j) > _I (j) • (B9)

It suffices to show that this implies

_2(J+l) > _l(J+l) . (BI0)

Note that Br-CF*(r) is an increasing function of r and assumption

(B9) implies

B_2(J)-cF*(_ 2(j)) > B_I(J)-cF*(_I(J))

Combining this result with (B8) and (B7) produces (BI0) and

completes the proof.
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APPENDIX C

PROGRAM RECOM

PARAMETER(NT=201)

DIMENSION T(0:NT) ,F(NT) ,F3(NT) ,S(NT)

REAL K,N,NI(NT) ,N2(NT)

COMMON T,F,K,T0

C SET CONSTANTS.

WRITE(*,*)'ENTER INITIAL LINEAR TRACK DENSITY (I/CM)'

READ*,N

WRITE(*,*)'ENTER INITIAL CHARACTERISTIC RADIUS (CM)'

READ*,RC

D=17.3

C=3.79E-31

PI4=12.56637

PI4D=PI4*D

T0=RC*RC/(4.0*D)

K=0.7357589*C*N*N/(PI4D*PI4D)
C CALL A SUBROUTINE TO CONSTRUCT THE TIME POINTS T(0),..,T(NT).

C ALL DATA TRANSFER IS THROUGH THE COMMON BLOCK.

CALL TIME

C CALL A SUBROUTINE TO CONSTRUCT THE ARRAY F WHICH REPRESENTS

C THE FUNCTION f BY THE RELATION F(J)=f(T(J)). ALL DATA TRANSFER

C IS THROUGH THE COMMON BLOCK.

CALL FUN

C CONSTRUCT AN ARRAY TO REPRESENT NI(T) GIVEN BY EQ. (43) AND AN

C ARRAY TO REPRESENT F3(T) GIVEN BY EQ.(47).

DO i0 J=I,NT

TJ=T (J)

FI=SQRT(2.0*C*TJ)/(PI4D*(TJ+T0))

F2=N*FI*F(J)

WI=SQRT (I. 0+F2*F2)

W2 =ALOG (F2+WI)

N1 (J) =W2/FI

F3 (J) = (W2-F2/WI) / (TJ*FI)

i0 CONTINUE

C CONSTRUCT THE INTEGRAL IN (44). S(J) IS THE INTEGRAL EVALUATED

C AT t=T(J). CONSTRUCT N2(J) FROM THE INTEGRAL.

S(1)=F3(1)*T(1)

N2 (i)=N-0.5"S (i)

DO 20 J=I,NT-I

S (J+l) =0.5* (F3 (J) +F3 (J+l)) * (T(J+I) -T (J)) +S (J)

N2(J+I)=N-0.5*S(J+I)

20 CONTINUE

C OUTPUT THE DATA.

OPEN(UNIT=I,FILE='RCOM.OUT',STATUS='UNKNOWN ')

REWIND(l)

WRITE(I,*)'N =',N

WRITE(l,*) 'RC=' ,RC

WRITE(I,*) ' '

WRITE(l,*) ' '

WRITE(I,*) ' TIME (SEC)

DO 30 J=I,NT

AVG=0.5* (NI (J) +N2 (J))/N

FRACTIONAL SURVIVING E-H PAIRS'
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ERROR=0.5* (N2 (J)-NI (J))/N

WRITE(I,40) T(J) ,AVG, '+ or -',ERROR

30 CONTINUE

CLOSE (i )

40 FORMAT (El2.4, FI6.3, A8, F6.3)
END

********************************************************************

SUBROUTINE TIME

PARAMETER (NT=201 )

DIMENSION T(0:NT),F(NT)
REAL K

COMMON T, F, K, TO

C SELECT POINTS ON THE TIME AXIS AND DENOTE THEM AS T(0),...T(NT),

C WHERE T(0)=0, T(1)=T0/100, T(NT)=I50K, AND THE REMAINING Ts

C ARE CHOSEN SO THAT T(1),...,T(NT) ARE EQUALLY SPACED ON A

C LOGARITHMIC SCALE.

T(0)=0.0

T (i) =T0/100.0

T(NT) =150.0*K

RNT=FLOAT (NT)

A=ALOGI0 (T (NT)/T (i) )/ (RNT-I. 0)

B=ALOGI0 (T (i)/T0) -A

DO I0 J=2,NT-I

RJ=FLOAT (J)

T (J) =T0*I0.0"* (A*RJ+B)

10 CONTINUE

RETURN

END

********************************************************************

SUBROUTINE FUN

PARAMETER (NT=201 )

DIMENSION T(0:NT),F(NT),HI(NT),S(NT),FI(NT)
REAL K

COMMON T, F,K,T0

THE FUNCTION f IN EQ. (37) IS REPRESENTED BY THE ARRAY F AND IS

SOLVED BY ITERATION. FIRST CONSTRUCT THE INITIAL GUESS.

DO i0 J=I,NT

F(J)=I.0
i0 CONTINUE

START THE ITERATION LOOP.

20 CONTINUE

CONSTRUCT ARRAYS TO SIMPLIFY THE INTEGRAL IN (37) . HI IS THE

INTEGRAND AND W IS THE ARGUMENT OF H. H IS A FUNCTION

SUBPROGRAM.

DO 30 J=I,NT

W=K*T(J) *F(J) *F(J) / (T(J) +TO) **2.0

HI (J) =i. 5*H (W)/(T (J) +TO)

30 CONTINUE

CONSTRUCT THE INTEGRAL IN (37). S(J) IS THE INTEGRAL

EVALUATED AT T(J) .

S (i) =0.5*HI (I) *T(1)

DO 40 J=I,NT-I

S (J+l) =S (J) +0.5* (HI (J) +HI (J+l)) * (T(J+I) -T(J) )

40 CONTINUE

STORE THE EXISTING Fs IN A NEW ARRAY, FI, FOR A FUTURE

C

C

C

C

C

C

C

C

C

36



C ACCURACYCHECK, AND UPDATETHE VALUES STOREDIN F USING (37).
DO 50 J=I,NT
F1 (J) =F(J)
F (J) =EXP(-I. 0*S (J))

50 CONTINUE
C PERFORMACCURACYCHECKAND ESCAPE FROMLOOP IF SATISFIED.

IERROR=0
DO 60 J=I,NT
IF (ABS(FI(J)-F(J)) .GE.0.0001) IERROR=I

60 CONTINUE
IF (IERROR.EQ.I) GO TO 20
DO 70 J=I,NT
F (J) =0.5" (F (J) +FI (J))

70 CONTINUE
RETURN
END

********************************************************************

FUNCTION H (X)

C THE OBJECTIVE IS TO SOLVE FOR U=H(X). THIS IS DONE BY ITERATING

C THE EQUATION U=0.5*(LN(X/U)+U) IF X >= .9 OR THE EQUATION

C U=X*EXP(-U) IF X < .9. USE THE INITIAL GUESS U=X/2.
U=0.5*X

i0 IF (X.GE.0.9) THEN

U=0.5* (ALOG (X/U) +U)

ELSE

U=X*EXP (-U)

END IF

IF (ABS(U*EXP(U)/X-I.0).LE.0.0001) THEN
H=U

GO TO 20

END IF

GO TO I0

20 CONTINUE

RETURN

END
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